enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffusion - Wikipedia

    en.wikipedia.org/wiki/Diffusion

    Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics , probability theory , information theory , neural networks , finance ...

  3. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    Diffusion is of fundamental importance in many disciplines of physics, chemistry, and biology. Some example applications of diffusion: Sintering to produce solid materials (powder metallurgy, production of ceramics) Chemical reactor design; Catalyst design in chemical industry; Steel can be diffused (e.g., with carbon or nitrogen) to modify its ...

  4. Equimolar counterdiffusion - Wikipedia

    en.wikipedia.org/wiki/Equimolar_counterdiffusion

    This type of diffusion is referred to as equimolar counterdiffusion, and the two species, A and B, are in combination with each other. As an example, if there are two groups of mixtures containing species A and B connected by a channel, then species A will diffuse in the direction of species B, and vice versa.

  5. Diffusion process - Wikipedia

    en.wikipedia.org/wiki/Diffusion_process

    Diffusion process is stochastic in nature and hence is used to model many real-life stochastic systems. Brownian motion , reflected Brownian motion and Ornstein–Uhlenbeck processes are examples of diffusion processes.

  6. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  7. Reaction–diffusion system - Wikipedia

    en.wikipedia.org/wiki/Reaction–diffusion_system

    Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...

  8. Atomic diffusion - Wikipedia

    en.wikipedia.org/wiki/Atomic_diffusion

    Atomic diffusion in polycrystalline materials is therefore often modeled using an effective diffusion coefficient, which is a combination of lattice, and grain boundary diffusion coefficients. In general, surface diffusion occurs much faster than grain boundary diffusion, and grain boundary diffusion occurs much faster than lattice diffusion.

  9. Osmosis - Wikipedia

    en.wikipedia.org/wiki/Osmosis

    The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...