Search results
Results from the WOW.Com Content Network
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the Joule–Thomson effect. For reference, the Joule–Thomson coefficient μ JT for air at room temperature and sea level is 0.22 °C/bar. [7]
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]
According to the second law, in a reversible heat transfer, an element of heat transferred, , is the product of the temperature (), both of the system and of the sources or destination of the heat, with the increment of the system's conjugate variable, its entropy (): [1]
The most important thermophysical property is thermal inertia, which controls the amplitude of the thermal curve and albedo (or reflectivity), which controls the average temperature. This field of observations and computer modeling was first applied to Mars due to the ideal atmospheric pressure for characterising granular materials based upon ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
The temperature of the ideal gas is proportional to the average kinetic energy of its particles. The size of helium atoms relative to their spacing is shown to scale under 1,950 atmospheres of pressure. The atoms have an average speed relative to their size slowed down here two trillion fold from that at room temperature.
However, for the same mass flow-rate, a lower cross-sectional area implies a higher fluid velocity and therefore a higher pressure difference to accelerate the fluid. In respiratory physiology, inertance (of air) is measured in cm H 2 O s 2 L −1. 1 cm H 2 O s 2 L −1 ≈ 98100 Pa s 2 m −3.