Search results
Results from the WOW.Com Content Network
mpmath: a Python library for arbitrary-precision floating-point arithmetic [15] SympyCore: another Python computer algebra system [16] SfePy: Software for solving systems of coupled partial differential equations (PDEs) by the finite element method in 1D, 2D and 3D. [17] GAlgebra: Geometric algebra module (previously sympy.galgebra). [18]
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations.
Lis is a scalable parallel library for solving systems of linear equations and eigenvalue problems using iterative methods. Intel MKL (Math Kernel Library) contains optimized math routines for science, engineering, and financial applications, and is written in C/C++ and Fortran. Core math functions include BLAS, LAPACK, ScaLAPACK, sparse ...
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.
To solve the equations, we choose a relaxation factor = and an initial guess vector = (,,,). According to the successive over-relaxation algorithm, the following table is obtained, representing an exemplary iteration with approximations, which ideally, but not necessarily, finds the exact solution, (3, −2, 2, 1) , in 38 steps.
The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has + on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.
In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel.
Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method. We seek the solution to a set of linear equations, expressed in matrix terms as =.