Search results
Results from the WOW.Com Content Network
Accidental release source terms are the mathematical equations that quantify the flow rate at which accidental releases of liquid or gaseous pollutants into the ambient environment which can occur at industrial facilities such as petroleum refineries, petrochemical plants, natural gas processing plants, oil and gas transportation pipelines, chemical plants, and many other industrial activities.
Leakage in narrow clearance, spool valve. Hydraulic clearance. Flow in narrow clearances are of vital importance in hydraulic system component design. The flow in a narrow circular clearance of a spool valve can be calculated according to the formula below if the height is negligible compared to the width of the clearance, such as most of the clearances in hydraulic pumps, hydraulic motors ...
The relationship between pressure and leakage air flow rate is defined by the power law between the airflow rate and the pressure difference across the building envelope as follows: [16] q L =C L ∆p n. where: q L is the volumetric leakage airflow rate expressed in m 3 h −1; C L is the air leakage coefficient expressed in m 3 h −1 Pa −n
One example of standard conditions for the calculation of SCCM is = 0 °C (273.15 K) [1] and = 1.01 bar (14.72 psia) and a unity compressibility factor = 1 (i.e., an ideal gas is used for the definition of SCCM). [2] This example is for the semi-conductor-manufacturing industry.
The air exchange rate, (I), is the number of interior volume air changes that occur per hour, and has units of 1/h. The air exchange rate is also known as air changes per hour (ACH). ACH is the hourly ventilation rate, divided by the building volume. It can be calculated by multiplying the building's CFM by 60, and then dividing by the building ...
A concept closely-related but different [2] to instantaneous failure rate () is the hazard rate (or hazard function), (). In the many-system case, this is defined as the proportional failure rate of the systems still functioning at time t {\displaystyle t} (as opposed to f ( t ) {\displaystyle f(t)} , which is the expressed as a proportion of ...
The leaky bucket is an algorithm based on an analogy of how a bucket with a constant leak will overflow if either the average rate at which water is poured in exceeds the rate at which the bucket leaks or if more water than the capacity of the bucket is poured in all at once.
The leakage is evident in the 2nd row, blue trace. It is the same amount as the red trace, which represents a slightly higher frequency that does not have an integer number of cycles. When the sinusoid is sampled and windowed, its discrete-time Fourier transform also exhibits the same leakage pattern (rows 3 and 4).