Search results
Results from the WOW.Com Content Network
If the tree is not empty, then we go down the root, and recursively go down the tree searching for the location to insert the new node. This traversal is guided by the comparison function. In this case, the node always replaces a NULL reference (left or right) of an external node in the tree i.e., the node is either made a left-child or a right ...
Deletion from an AVL tree may be carried out by rotating the node to be deleted down into a leaf node, and then pruning off that leaf node directly. Since at most log n nodes are rotated during the rotation into the leaf, and each AVL rotation takes constant time, the deletion process in total takes O(log n) time.
Weak AVL rule: all rank differences are 1 or 2, and all leaf nodes have rank 0. Note that weak AVL tree generalizes the AVL tree by allowing for 2,2 type node. A simple proof shows that a weak AVL tree can be colored in a way that represents a red-black tree. So in a sense, weak AVL tree combines the properties of AVL tree and red-black tree.
For example, leaf nodes by definition have no descendants, so given only a pointer to a leaf node no other node can be reached. A threaded tree adds extra information in some or all nodes, so that for any given single node the "next" node can be found quickly, allowing tree traversal without recursion and the extra storage (proportional to the ...
Join follows the right spine of t 1 until a black node c, which is balanced with t 2. At this point a new node with left child c, root k (set to be red) and right child t 2 is created to replace c. The new node may invalidate the red–black invariant because at most three red nodes can appear in a row. This can be fixed with a double rotation.
To insert an element to a heap, we perform the following steps: Add the element to the bottom level of the heap at the leftmost open space. Compare the added element with its parent; if they are in the correct order, stop. If not, swap the element with its parent and return to the previous step.
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
Join follows the right spine of t 1 until a node c which is balanced with t 2. At this point a new node with left child c, root k and right child t 2 is created to replace c. The new node may invalidate the weight-balanced invariant. This can be fixed with a single or a double rotation assuming <