Search results
Results from the WOW.Com Content Network
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
A nine-point circle bisects a line segment going from the corresponding triangle's orthocenter to any point on its circumcircle. Figure 4. The center N of the nine-point circle bisects a segment from the orthocenter H to the circumcenter O (making the orthocenter a center of dilation to both circles): [6]: p.152
In polar coordinates, the equation of a line not passing through the origin—the point with coordinates (0, 0) —can be written = (), with r > 0 and / < < + / Here, p is the (positive) length of the line segment perpendicular to the line and delimited by the origin and the line, and φ {\displaystyle \varphi } is the (oriented) angle from ...
A line a is drawn from O, the center of the circle, through the radial point T; The line t is the perpendicular line to a. Construction of a tangent to a given circle (black) from a given exterior point (P). Thales' theorem may be used to construct the tangent lines to a point P external to the circle C:
For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x 2 + y 2 = 4; the area, the perimeter and the tangent line at any point can be computed from this equation by using integrals and derivatives, in a way that can be applied to any curve.
Creating the line through two points; Creating the circle that contains one point and has a center at another point; Creating the point at the intersection of two (non-parallel) lines; Creating the one point or two points in the intersection of a line and a circle (if they intersect)
one solves the line equation for x or y and substitutes it into the equation of the circle and gets for the solution (using the formula of a quadratic equation) (,), (,) with x 1 / 2 = a c ± b r 2 ( a 2 + b 2 ) − c 2 a 2 + b 2 , {\displaystyle x_{1/2}={\frac {ac\pm b{\sqrt {r^{2}(a^{2}+b^{2})-c^{2}}}}{a^{2}+b^{2}}}\ ,}
Draw a horizontal line through the center of the circle. Mark one intersection with the circle as point B. Construct a vertical line through the center. Mark one intersection with the circle as point A. Construct the point M as the midpoint of O and B. Draw a circle centered at M through the point A. This is the Carlyle circle for x 2 + x −