Search results
Results from the WOW.Com Content Network
The slope field can be defined for the following type of differential equations y ′ = f ( x , y ) , {\displaystyle y'=f(x,y),} which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution ( integral curve ) at each point ( x , y ) as a function of the point coordinates.
Fig. 1: Isoclines (blue), slope field (black), and some solution curves (red) of y' = xy. The solution curves are y = C e x 2 / 2 {\displaystyle y=Ce^{x^{2}/2}} . Given a family of curves , assumed to be differentiable , an isocline for that family is formed by the set of points at which some member of the family attains a given slope .
This is a partial differential equation, in particular a Hamilton–Jacobi equation, and can be solved numerically, for example, by using finite differences on a Cartesian grid. [2] [3] However, the numerical solution of the level set equation may require advanced techniques. Simple finite difference methods fail quickly.
The second-order autonomous equation = (, ′) is more difficult, but it can be solved [2] by introducing the new variable = and expressing the second derivative of via the chain rule as = = = so that the original equation becomes = (,) which is a first order equation containing no reference to the independent variable .
The flow field around an airplane is a vector field in R 3, here visualized by bubbles that follow the streamlines showing a wingtip vortex. Vector fields are commonly used to create patterns in computer graphics. Here: abstract composition of curves following a vector field generated with OpenSimplex noise.
It uses a combination of the energy, momentum, and continuity equations to determine water depth with a given a friction slope (), channel slope (), channel geometry, and also a given flow rate. In practice, this technique is widely used through the computer program HEC-RAS , developed by the US Army Corps of Engineers Hydrologic Engineering ...
Slope or grade measures how steep the terrain is at any point on the surface, deviating from a horizontal surface. In principle, it is the angle between the gradient vector and the horizontal plane, given either as an angular measure α (common in scientific applications) or as the ratio p = r i s e r u n {\displaystyle p={\frac {rise}{run ...
l = slope length α = angle of inclination. The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line refers to the tangent of the angle of that surface to the horizontal. It is a special case of the slope, where zero indicates horizontality. A larger number ...