enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  3. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    At the atomic scale, a temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side. This is due to charge carrier particles having higher mean velocities (and thus kinetic energy) at higher temperatures, leading them to migrate on average towards the colder side, in the process carrying heat across the material.

  4. Internal energy - Wikipedia

    en.wikipedia.org/wiki/Internal_energy

    The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.

  5. Outline of energy - Wikipedia

    en.wikipedia.org/wiki/Outline_of_energy

    Heat – an amount of thermal energy being transferred (in a given process) in the direction of decreasing temperature; Work (physics) – an amount of energy being energy transferred in a given process due to displacement in the direction of an applied force; Electric power; Electricity

  6. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    Thus, even if the internal energy does not change, the temperature can change due to conversion between kinetic and potential energy; this is what happens in a free expansion and typically produces a decrease in temperature as the fluid expands. [13] [14] If work is done on or by the fluid as it expands, then the total internal energy changes ...

  7. Conjugate variables (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_variables...

    The pressure acts as a generalized force – pressure differences force a change in volume, and their product is the energy lost by the system due to mechanical work. Pressure is the driving force, volume is the associated displacement, and the two form a pair of conjugate variables. The above holds true only for non-viscous fluids.

  8. Exergy - Wikipedia

    en.wikipedia.org/wiki/Exergy

    If there is an energy transformation, the second principle of energy flow transformations says that this process must involve the dissipation of some energy as heat. Measuring the amount of heat released is one way of quantifying the energy, or ability to do work and apply a force over a distance.

  9. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    Thus heat is not defined calorimetrically or as due to temperature difference. It is defined as a residual difference between change of internal energy and work done on the system, when that work does not account for the whole of the change of internal energy and the system is not adiabatically isolated. [28] [29] [30]

  1. Related searches how is energy related to work force and power flow due to temperature change

    thermodynamics of work definitioninternal energy of thermodynamics
    how to work in thermodynamics