Search results
Results from the WOW.Com Content Network
An example of uniform tiling in the Archeological Museum of Seville, Sevilla, Spain: rhombitrihexagonal tiling Regular tilings and their duals drawn by Max Brückner in Vielecke und Vielflache (1900) This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane , and their dual tilings.
In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra; these can be considered uniform tilings of the sphere.
k-uniform tilings with the same vertex figures can be further identified by their wallpaper group symmetry. 1-uniform tilings include 3 regular tilings, and 8 semiregular ones, with 2 or more types of regular polygon faces. There are 20 2-uniform tilings, 61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings and 673 6-uniform tilings.
In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).
List of Euclidean uniform tilings; Uniform tiling symmetry mutations; W. Wang tile This page was last edited on 5 November 2014, at 22:50 (UTC). ...
In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other).
In geometry of the Euclidean plane, a 33344-33434 tiling is one of two of 20 2-uniform tilings of the Euclidean plane by regular polygons. They contains regular triangle and square faces, arranged in two vertex configuration: 3.3.3.4.4 and 3.3.4.3.4. [2] The first has triangles in groups of 3 and square in groups of 1 and 2.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more