enow.com Web Search

  1. Ad

    related to: variation theory 2 step equations

Search results

  1. Results from the WOW.Com Content Network
  2. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [l] is defined as the linear part of the change in the functional, and the second variation [m] is defined as the quadratic part. [22]

  3. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. Accordingly, the necessary condition of extremum ( functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf .

  4. Variation of parameters - Wikipedia

    en.wikipedia.org/wiki/Variation_of_parameters

    In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...

  5. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    In this context Euler equations are usually called Lagrange equations. In classical mechanics, [2] it is equivalent to Newton's laws of motion; indeed, the Euler-Lagrange equations will produce the same equations as Newton's Laws. This is particularly useful when analyzing systems whose force vectors are particularly complicated.

  6. Total variation - Wikipedia

    en.wikipedia.org/wiki/Total_variation

    In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure.For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation x ↦ f(x ...

  7. Variational inequality - Wikipedia

    en.wikipedia.org/wiki/Variational_inequality

    Following Antman (1983, p. 283), the definition of a variational inequality is the following one.. Given a Banach space, a subset of , and a functional : from to the dual space of the space , the variational inequality problem is the problem of solving for the variable belonging to the following inequality:

  8. Functional derivative - Wikipedia

    en.wikipedia.org/wiki/Functional_derivative

    In the calculus of variations, a field of mathematical analysis, the functional derivative (or variational derivative) [1] relates a change in a functional (a functional in this sense is a function that acts on functions) to a change in a function on which the functional depends.

  9. Variational principle - Wikipedia

    en.wikipedia.org/wiki/Variational_principle

    The principle of least action in mechanics, electromagnetic theory, and quantum mechanics; The variational method in quantum mechanics; Hellmann–Feynman theorem; Gauss's principle of least constraint and Hertz's principle of least curvature; Hilbert's action principle in general relativity, leading to the Einstein field equations. Palatini ...

  1. Ad

    related to: variation theory 2 step equations