enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    For other binary formats, the required number of decimal digits is [h] + ⌈ ⁡ ⌉, where p is the number of significant bits in the binary format, e.g. 237 bits for binary256. When using a decimal floating-point format, the decimal representation will be preserved using:

  3. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Here we can show how to convert a base-10 real number into an IEEE 754 binary32 format using the following outline: Consider a real number with an integer and a fraction part such as 12.375; Convert and normalize the integer part into binary; Convert the fraction part using the following technique as shown here

  4. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each. The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32).

  5. Binary integer decimal - Wikipedia

    en.wikipedia.org/wiki/Binary_Integer_Decimal

    The IEEE 754-2008 standard includes decimal floating-point number formats in which the significand and the exponent (and the payloads of NaNs) can be encoded in two ways, referred to as binary encoding and decimal encoding.

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For example, the decimal numbers 0.1 and 0.01 cannot be represented exactly as binary floating-point numbers. In the IEEE 754 binary32 format with its 24-bit significand, the result of attempting to square the approximation to 0.1 is neither 0.01 nor the representable number closest to it.

  7. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    In computing, half precision (sometimes called FP16 or float16) is a binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks .

  8. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    However, on modern standard computers (i.e., implementing IEEE 754), one may safely assume that the endianness is the same for floating-point numbers as for integers, making the conversion straightforward regardless of data type. Small embedded systems using special floating-point formats may be another matter, however.

  9. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    The IEEE 754 standard specifies a binary128 as having: Sign bit: 1 bit; Exponent width: 15 bits; Significand precision: 113 bits (112 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed). "1" stands for negative. This gives from 33 to 36 significant decimal digits precision.