Search results
Results from the WOW.Com Content Network
Formally, if one expands () (), the terms are precisely (), where is either 0 or 1, accordingly as whether is included in the product or not, and k is the number of that are included, so the total number of factors in the product is n (counting with multiplicity k) – as there are n binary choices (include or x), there are terms ...
has no real number solution since no real number squared equals −1. Sometimes a quadratic equation has a root of multiplicity 2, such as: (+) = For this equation, −1 is a root of multiplicity 2. This means −1 appears twice, since the equation can be rewritten in factored form as
Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Any nth degree polynomial has exactly n roots in the complex plane, if counted according to multiplicity. So if f(x) is a polynomial with real coefficients which does not have a root at 0 (that is a polynomial with a nonzero constant term) then the minimum number of nonreal roots is equal to (+),
However, for any degree there are some polynomial equations that have algebraic solutions; for example, the equation = can be solved as =. The eight other solutions are nonreal complex numbers , which are also algebraic and have the form x = ± r 2 10 , {\displaystyle x=\pm r{\sqrt[{10}]{2}},} where r is a fifth root of unity , which can be ...
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .
For example, antiderivatives of x 2 + 1 have the form 1 / 3 x 3 + x + c. For polynomials whose coefficients come from more abstract settings (for example, if the coefficients are integers modulo some prime number p , or elements of an arbitrary ring), the formula for the derivative can still be interpreted formally, with the coefficient ...