Search results
Results from the WOW.Com Content Network
If the fractional part of x is 0.5, choose y randomly between x + 0.5 and x − 0.5, with equal probability. All others are rounded to the closest integer. Like round-half-to-even and round-half-to-odd, this rule is essentially free of overall bias, but it is also fair among even and odd y values. An advantage over alternate tie-breaking is ...
At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...
There are two common rounding rules, round-by-chop and round-to-nearest. The IEEE standard uses round-to-nearest. Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there ...
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
For example, using single-precision IEEE arithmetic, if x = −2 −149, then x/2 underflows to −0, and dividing 1 by this result produces 1/(x/2) = −∞. The exact result −2 150 is too large to represent as a single-precision number, so an infinity of the same sign is used instead to indicate overflow.
|-N (where -N is a negative number) replaces N digits before the decimal mark with zero (round output to nearest 10 N). |sigfig=N (where N is a positive number) to specify the number of significant digits (round output to N significant figures). |round=5 to round the output to the nearest multiple of 5. The round value can be 0.5, 5, 10, 25 or ...
AOL
The number 1.00 should not appear in this calculation. We're interested in rounding the interval [0.00, 1.00) -- that is, all numbers >= 0.00 and < 1.00 (strictly smaller than 1). Once the number 1.00 is removed from the above paragraph, the imbalance disappears (contrary to what's written above).