Search results
Results from the WOW.Com Content Network
gperf is an open source C and C++ perfect hash generator (very fast, but only works for small sets) Minimal Perfect Hashing (bob algorithm) by Bob Jenkins; cmph: C Minimal Perfect Hashing Library, open source implementations for many (minimal) perfect hashes (works for big sets) Sux4J: open source monotone minimal perfect hashing in Java
A hash function that allows only certain table sizes or strings only up to a certain length, or cannot accept a seed (i.e. allow double hashing) is less useful than one that does. [citation needed] A hash function is applicable in a variety of situations. Particularly within cryptography, notable applications include: [8]
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
MurmurHash is a non-cryptographic hash function suitable for general hash-based lookup. [1] [2] [3] It was created by Austin Appleby in 2008 [4] and, as of 8 January 2016, [5] is hosted on GitHub along with its test suite named SMHasher. It also exists in a number of variants, [6] all of which have been released into the public domain. The name ...
In the programming language C++, unordered associative containers are a group of class templates in the C++ Standard Library that implement hash table variants. Being templates, they can be used to store arbitrary elements, such as integers or custom classes.
In computing, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. [2] A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value ...
The Whirlpool hash function is a Merkle–Damgård construction based on an AES-like block cipher W in Miyaguchi–Preneel mode. [2] The block cipher W consists of an 8×8 state matrix of bytes, for a total of 512 bits. The encryption process consists of updating the state with four round functions over 10 rounds.
Extend our hash function h to accept both a set member and an integer, then generate multiple hashes for each item, according to its weight. If item i occurs n times, generate hashes (,), (,), …, (,). Run the original algorithm on this expanded set of hashes.