Search results
Results from the WOW.Com Content Network
In mathematics, the inverse trigonometric functions (occasionally also called antitrigonometric, [1] cyclometric, [2] or arcus functions [3]) are the inverse functions of the trigonometric functions, under suitably restricted domains.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at
There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin −1, asin, or, as is used on this page, arcsin. For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.
arcsin – inverse sine function. arctan – inverse tangent function. arctan2 – inverse tangent function with two arguments. (Also written as atan2.) arg – argument of. [2] arg max – argument of the maximum. arg min – argument of the minimum. arsech – inverse hyperbolic secant function. arsinh – inverse hyperbolic sine function.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
2.5 Proof of compositions of trig and inverse trig functions. 3 See also. ... The area of triangle OCD is CD/2, or tan ... 0, and 1/2, so the resultant limit is zero. ...
The inverse tangent integral is a special function, defined by: Ti 2 ( x ) = ∫ 0 x arctan t t d t {\displaystyle \operatorname {Ti} _{2}(x)=\int _{0}^{x}{\frac {\arctan t}{t}}\,dt} Equivalently, it can be defined by a power series , or in terms of the dilogarithm , a closely related special function.
Mādhava's work was unknown in Europe, and the arctangent series was independently rediscovered by James Gregory in 1671 and by Gottfried Leibniz in 1673. [2] In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [3]