enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    R has built-in functions [22] and packages that provide functions for hierarchical clustering. [23] [24] [25] SciPy implements hierarchical clustering in Python, including the efficient SLINK algorithm. scikit-learn also implements hierarchical clustering in Python. Weka includes hierarchical cluster analysis.

  3. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    Hierarchical classification tackles the multi-class classification problem by dividing the output space i.e. into a tree. Each parent node is divided into multiple child nodes and the process is continued until each child node represents only one class. Several methods have been proposed based on hierarchical classification.

  4. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression .

  5. Hierarchical Dirichlet process - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_Dirichlet_process

    In statistics and machine learning, the hierarchical Dirichlet process (HDP) is a nonparametric Bayesian approach to clustering grouped data. [ 1 ] [ 2 ] It uses a Dirichlet process for each group of data, with the Dirichlet processes for all groups sharing a base distribution which is itself drawn from a Dirichlet process.

  6. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.

  7. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  8. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Multilevel models (also known as hierarchical linear models, linear mixed-effect models, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. [1]

  9. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    Each MoE layer uses a hierarchical MoE with two levels. On the first level, the gating function chooses to use either a "shared" feedforward layer, or to use the experts. If using the experts, then another gating function computes the weights and chooses the top-2 experts. [38]