enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    For example, class 5 is defined to include numbers between 10 10 10 10 6 and 10 10 10 10 10 6, which are numbers where X becomes humanly indistinguishable from X 2 [14] (taking iterated logarithms of such X yields indistinguishibility firstly between log(X) and 2log(X), secondly between log(log(X)) and 1+log(log(X)), and finally an extremely ...

  3. Integer - Wikipedia

    en.wikipedia.org/wiki/Integer

    For example, 21, 4, 0, and −2048 are integers, while 9.75, ⁠5 + 1 / 2 ⁠, 5/4, and √ 2 are not. [8] The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers.

  4. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    dc: "Desktop Calculator" arbitrary-precision RPN calculator that comes standard on most Unix-like systems. KCalc, Linux based scientific calculator; Maxima: a computer algebra system which bignum integers are directly inherited from its implementation language Common Lisp. In addition, it supports arbitrary-precision floating-point numbers ...

  5. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Rational number arithmetic involves operations on fractions of integers. Real number arithmetic is about calculations with real numbers, which include both rational and irrational numbers. Another distinction is based on the numeral system employed to perform calculations. Decimal arithmetic is the most common.

  6. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    With the example in view, a number of details can be discussed. The most important is the choice of the representation of the big number. In this case, only integer values are required for digits, so an array of fixed-width integers is adequate. It is convenient to have successive elements of the array represent higher powers of the base.

  7. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.

  8. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    The only difference is how the computer interprets them. If the computer stored four unsigned integers and then read them back from memory as a 64-bit real, it almost always would be a perfectly valid real number, though it would be junk data. Only a finite range of real numbers can be represented with a given number of bits.

  9. Computer algebra system - Wikipedia

    en.wikipedia.org/wiki/Computer_algebra_system

    The primary reason for such advocacy is that computer algebra systems represent real-world math more than do paper-and-pencil or hand calculator based mathematics. [12] This push for increasing computer usage in mathematics classrooms has been supported by some boards of education.