enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953), who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O(V 4).

  3. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  4. Parallel all-pairs shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_all-pairs...

    A central problem in algorithmic graph theory is the shortest path problem. Hereby, the problem of finding the shortest path between every pair of nodes is known as all-pair-shortest-paths (APSP) problem. As sequential algorithms for this problem often yield long runtimes, parallelization has shown to be beneficial in this field. In this ...

  5. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.

  6. Parallel single-source shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_single-source...

    A central problem in algorithmic graph theory is the shortest path problem. One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex s {\displaystyle s} to all other vertices in the graph.

  7. Floyd–Warshall algorithm - Wikipedia

    en.wikipedia.org/wiki/Floyd–Warshall_algorithm

    The Floyd–Warshall algorithm can be used to solve the following problems, among others: Shortest paths in directed graphs (Floyd's algorithm). Transitive closure of directed graphs (Warshall's algorithm). In Warshall's original formulation of the algorithm, the graph is unweighted and represented by a Boolean adjacency matrix.

  8. Yen's algorithm - Wikipedia

    en.wikipedia.org/wiki/Yen's_algorithm

    In graph theory, Yen's algorithm computes single-source K-shortest loopless paths for a graph with non-negative edge cost. [1] The algorithm was published by Jin Y. Yen in 1971 and employs any shortest path algorithm to find the best path, then proceeds to find K − 1 deviations of the best path.

  9. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    The algorithm continues until a removed node (thus the node with the lowest f value out of all fringe nodes) is a goal node. [b] The f value of that goal is then also the cost of the shortest path, since h at the goal is zero in an admissible heuristic. The algorithm described so far only gives the length of the shortest path.