Search results
Results from the WOW.Com Content Network
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
This spacing is called the electron affinity (note that this has a different meaning than the electron affinity of chemistry); in silicon for example the electron affinity is 4.05 eV. [16] If the electron affinity E EA and the surface's band-referenced Fermi level E F-E C are known, then the work function is given by
The electron affinity (usually given by the symbol in solid state physics) gives the energy difference between the lower edge of the conduction band and the vacuum level of the semiconductor. The band gap (usually given the symbol E g {\displaystyle E_{\rm {g}}} ) gives the energy difference between the lower edge of the conduction band and the ...
One component is the difference in the work function (also called the electron affinity) between the two materials. [48] This can lead to charge transfer as, for instance, analyzed by Harper. [ 49 ] [ 50 ] As has been known since at least 1953, [ 37 ] [ 51 ] [ 52 ] [ 53 ] the contact potential is part of the process but does not explain many ...
In chemical physics and physical chemistry, chemical affinity is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. [1] Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Where is the electron affinity (i.e. the difference between the vacuum energy and the bottom energy of the conduction band). It is valuable to describe the work function of the semiconductor in terms of its electron affinity since this last one is an invariant fundamental property of the semiconductor, while the difference between the ...