enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Voltage-gated sodium channel - Wikipedia

    en.wikipedia.org/wiki/Voltage-gated_sodium_channel

    Voltage-gated sodium channels (VGSCs), also known as voltage-dependent sodium channels (VDSCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the sodium ion Na +. They are the main channels involved in action potential of excitable cells.

  3. Ball and chain inactivation - Wikipedia

    en.wikipedia.org/wiki/Ball_and_chain_inactivation

    A positively charged region between the III and IV domains of sodium channels is thought to act in a similar way. [9] The essential region for inactivation in sodium channels is four amino acid sequence made up of isoleucine, phenylalanine, methionine and threonine (IFMT). [13] The T and F interact directly with the docking site in the channel ...

  4. Sodium channel - Wikipedia

    en.wikipedia.org/wiki/Sodium_channel

    Sodium channels are highly selective for the transport of ions across cell membranes. The high selectivity with respect to the sodium ion is achieved in many different ways. All involve encapsulation of the sodium ion in a cavity of specific size within a larger molecule. [3]

  5. Gating (electrophysiology) - Wikipedia

    en.wikipedia.org/wiki/Gating_(electrophysiology)

    When ion channels are in a 'closed' (non-conducting) state, they are impermeable to ions and do not conduct electrical current. When ion channels are in their open state, they conduct electrical current by allowing specific types of ions to pass through them, and thus, across the plasma membrane of the cell. Gating is the process by which an ...

  6. Soliton model in neuroscience - Wikipedia

    en.wikipedia.org/wiki/Soliton_model_in_neuroscience

    The model is proposed as an alternative to the Hodgkin–Huxley model [2] in which action potentials: voltage-gated ion channels in the membrane open and allow sodium ions to enter the cell (inward current). The resulting decrease in membrane potential opens nearby voltage-gated sodium channels, thus propagating the action potential.

  7. Refractory period (physiology) - Wikipedia

    en.wikipedia.org/wiki/Refractory_period_(physiology)

    The period when the majority of sodium channels remain in the inactive state is the absolute refractory period. After this period, there are enough voltage-activated sodium channels in the closed (active) state to respond to depolarization. However, voltage-gated potassium channels that opened in response to repolarization do not close as ...

  8. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    b) Potassium (K +) ion. c) Sodium channel. d) Potassium channel. e) Sodium-potassium pump. In the stages of an action potential, the permeability of the membrane of the neuron changes. At the resting state (1), sodium and potassium ions have limited ability to pass through the membrane, and the neuron has a net negative charge inside.

  9. Voltage-gated ion channel - Wikipedia

    en.wikipedia.org/wiki/Voltage-gated_ion_channel

    Voltage-gated ion-channels are usually ion-specific, and channels specific to sodium (Na +), potassium (K +), calcium (Ca 2+), and chloride (Cl −) ions have been identified. [1] The opening and closing of the channels are triggered by changing ion concentration, and hence charge gradient, between the sides of the cell membrane.