Search results
Results from the WOW.Com Content Network
The term perfect has also been used as a synonym of just, to distinguish intervals tuned to ratios of small integers from those that are "tempered" or "imperfect" in various other tuning systems, such as equal temperament. [6] [7] The perfect unison has a pitch ratio 1:1, the perfect octave 2:1, the perfect fourth 4:3, and the perfect fifth 3:2.
All-fifths tuning. All-fifths tuning refers to the set of tunings for string instruments in which each interval between consecutive open strings is a perfect fifth. All-fifths tuning is the standard tuning for mandolin and violin and it is an alternative tuning for guitars. All-fifths tuning is also called fifths, perfect fifths, or mandoguitar ...
In music theory, the circle of fifths (sometimes also cycle of fifths) is a way of organizing pitches as a sequence of perfect fifths. Starting on a C, and using the standard system of tuning for Western music ( 12-tone equal temperament ), the sequence is: C, G, D, A, E, B, F ♯ /G ♭ , C ♯ /D ♭ , G ♯ /A ♭ , D ♯ /E ♭ , A ♯ /B ...
All-fifths tuning. Among guitar tunings, all-fifths tuning refers to the set of tunings in which each interval between consecutive open strings is a perfect fifth. All-fifths tuning is also called fifths, perfect fifths, or mandoguitar. [1] The conventional "standard tuning" consists of perfect fourths and a single major third between the g and ...
A Pythagorean comma is the difference between twelve justly tuned perfect fifths and seven octaves. It is expressed by the frequency ratio 531441:524288 (23.5 cents). A syntonic comma is the difference between four justly tuned perfect fifths and two octaves plus a major third. It is expressed by the ratio 81:80 (21.5 cents).
A benefit of stretching octaves is the correction of dissonance that equal temperament imparts to the perfect fifth. Without octave stretching, the slow, nearly imperceptible beating of fifths in the temperament region (ranging from little more than one beat every two seconds to about one per second) would double each ascending octave.
The Pythagorean scale is any scale which can be constructed from only pure perfect fifths (3:2) and octaves (2:1). [5] In Greek music it was used to tune tetrachords, which were composed into scales spanning an octave. [6] A distinction can be made between extended Pythagorean tuning and a 12-tone Pythagorean temperament.
In terms of frequency ratios, in order to close the circle of fifths, the product of the fifths' ratios must be 128 (since the twelve fifths, if closed in a circle, span seven octaves exactly; an octave is 2:1, and 2 7 = 128), and if f is the size of a fifth, 128 : f 11, or f 11 : 128, will be the size of the wolf.