enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    An example that illustrates nuclear binding energy is the nucleus of 12 C (carbon-12), which contains 6 protons and 6 neutrons. The protons are all positively charged and repel each other, but the nuclear force overcomes the repulsion and causes them to stick together. The nuclear force is a close-range force (it is strongly attractive at a ...

  3. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    The negative of binding energy per nucleon for nuclides with atomic mass number 125 plotted as a function of atomic number. The profile of binding energy across the valley of stability is roughly a parabola. Tellurium-125 (52 Te) is stable, while antimony-125 (51 Sb) is unstable to β− decay.

  4. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    Nuclear binding energy Nuclear binding energy is the energy required to disassemble a nucleus into the free, unbound neutrons and protons it is composed of. It is the energy equivalent of the mass defect, the difference between the mass number of a nucleus and its measured mass.

  5. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    Eventually, the binding energy becomes negative and very heavy nuclei (all with more than 208 nucleons, corresponding to a diameter of about 6 nucleons) are not stable. The four most tightly bound nuclei, in decreasing order of binding energy per nucleon, are 62 Ni, 58 Fe, 56 Fe, and 60 Ni. [22] Even though the nickel isotope, 62 Ni

  6. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    The binding energy of the nucleus is the difference between the rest-mass energy of the nucleus and the rest-mass energy of the neutron and proton nucleons. The binding energy formula includes volume, surface and Coulomb energy terms that include empirically derived coefficients for all three, plus energy ratios of a deformed nucleus relative ...

  7. Nuclear force - Wikipedia

    en.wikipedia.org/wiki/Nuclear_force

    With this potential nucleons can become bound with a negative "binding energy". The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected ...

  8. Strong interaction - Wikipedia

    en.wikipedia.org/wiki/Strong_interaction

    There are also differences in the binding energies of the nuclear force with regard to nuclear fusion versus nuclear fission. Nuclear fusion accounts for most energy production in the Sun and other stars. Nuclear fission allows for decay of radioactive elements and isotopes, although it is often

  9. Iron-56 - Wikipedia

    en.wikipedia.org/wiki/Iron-56

    Nuclear binding energy per nucleon of common isotopes; iron-56 labelled at the curve's crest. The rarer isotopes nickel-62 and iron-58, which both have higher binding energies, are not shown. Iron-56 (56 Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon.