Search results
Results from the WOW.Com Content Network
For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...
Interval arithmetic — represent every number by two floating-point numbers guaranteed to have the unknown number between them Interval contractor — maps interval to subinterval which still contains the unknown exact answer; Interval propagation — contracting interval domains without removing any value consistent with the constraints
Consider the above example of estimating f(2.5). Since 2.5 is midway between 2 and 3, it is reasonable to take f(2.5) midway between f(2) = 0.9093 and f(3) = 0.1411, which yields 0.5252. Generally, linear interpolation takes two data points, say (x a,y a) and (x b,y b), and the interpolant is given by:
The last two examples illustrate what happens if x is a rather small number. In the second from last example, x = 1.110111⋯111 × 2 −50 ; 15 bits altogether. The binary is replaced very crudely by a single power of 2 (in this example, 2 −49 ) and its decimal equivalent is used.
Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation.. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
By doing so, one makes an assumption of the unknown [1] (for example, a driver may extrapolate road conditions beyond what is currently visible and these extrapolations may be correct or incorrect). The extrapolation method can be applied in the interior reconstruction problem.
Multivariate interpolation is particularly important in geostatistics, where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or depths in a hydrographic survey).
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.