Search results
Results from the WOW.Com Content Network
For example, a Mercator map printed in a book might have an equatorial width of 13.4 cm corresponding to a globe radius of 2.13 cm and an RF of approximately 1 / 300M (M is used as an abbreviation for 1,000,000 in writing an RF) whereas Mercator's original 1569 map has a width of 198 cm corresponding to a globe radius of 31.5 cm and an ...
The Mercator projection is now used on the vast majority of nautical charts. Since the Mercator projection is conformal , that is, bearings in the chart are identical to the corresponding angles in nature, courses plotted on the chart may be used directly as the course-to-steer at the helm.
The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude , it is a horizontal position representation , which means it ignores altitude and treats the earth surface as a perfect ellipsoid .
The Mercator projection shows rhumbs as straight lines. A rhumb is a course of constant bearing. Bearing is the compass direction of movement. A normal cylindrical projection is any projection in which meridians are mapped to equally spaced vertical lines and circles of latitude (parallels) are mapped to horizontal lines.
oblique Mercator projection. The oblique Mercator map projection is an adaptation of the standard Mercator projection. The oblique version is sometimes used in national mapping systems. When paired with a suitable geodetic datum, the oblique Mercator delivers high accuracy in zones less than a few degrees in arbitrary directional extent.
(That is, the reciprocal of the cosine of the latitude become infinite). He therefore uses a completely different projection for the inset map of the north polar regions: an azimuthal equidistant projection. It took many years for Mercator's projection to gain wider acceptance. The following gallery shows the first maps in which it was employed.
The Mercator projection shows courses of constant bearing as straight lines. While common, scholars advise against using it for reference maps of the world because it drastically inflates the high latitudes.
The Mercator Projection, developed by Flemish geographer Gerardus Mercator, was widely used as the standard for two-dimensional world maps until the late 20th century, when more accurate projections were more widely used. Mercator also was the first to use and popularize the concept of the atlas: a collection of maps.