enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Big data - Wikipedia

    en.wikipedia.org/wiki/Big_data

    Big data "size" is a constantly moving target; as of 2012 ranging from a few dozen terabytes to many zettabytes of data. [26] Big data requires a set of techniques and technologies with new forms of integration to reveal insights from data-sets that are diverse, complex, and of a massive scale. [27]

  3. Lambda architecture - Wikipedia

    en.wikipedia.org/wiki/Lambda_architecture

    The two view outputs may be joined before presentation. The rise of lambda architecture is correlated with the growth of big data, real-time analytics, and the drive to mitigate the latencies of map-reduce. [1] Lambda architecture depends on a data model with an append-only, immutable data source that serves as a system of record.

  4. Data-intensive computing - Wikipedia

    en.wikipedia.org/wiki/Data-intensive_computing

    Data-intensive computing is a class of parallel computing applications which use a data parallel approach to process large volumes of data typically terabytes or petabytes in size and typically referred to as big data. Computing applications that devote most of their execution time to computational requirements are deemed compute-intensive ...

  5. Data technology - Wikipedia

    en.wikipedia.org/wiki/Data_technology

    Data Consulting - services based on analysing customer data and discovering insights from big data sets. It uses Machine Learning algorithms to find useful information from chaotic data. Technologies for AdTech sector - products and services that support digital marketing environment, including SSP, Demand-side platform and services used for ...

  6. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data science process flowchart from Doing Data Science, by Schutt & O'Neil (2013) Analysis refers to dividing a whole into its separate components for individual examination. [10] Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1]

  7. Data Science and Predictive Analytics - Wikipedia

    en.wikipedia.org/wiki/Data_Science_and...

    The significantly reorganized revised edition of the book (2023) [2] expands and modernizes the presented mathematical principles, computational methods, data science techniques, model-based machine learning and model-free artificial intelligence algorithms. The 14 chapters of the new edition start with an introduction and progressively build ...

  8. Data management - Wikipedia

    en.wikipedia.org/wiki/Data_management

    However, data has staged a comeback with the popularisation of the term big data, which refers to the collection and analyses of massive sets of data. While big data is a recent phenomenon, the requirement for data to aid decision-making traces back to the early 1970s with the emergence of decision support systems (DSS).

  9. Continuous analytics - Wikipedia

    en.wikipedia.org/wiki/Continuous_analytics

    Analytics is the application of mathematics and statistics to big data. Data scientists write analytics programs to look for solutions to business problems, like forecasting demand or setting an optimal price. The continuous approach runs multiple stateless engines which concurrently enrich, aggregate, infer and act on the data.