Search results
Results from the WOW.Com Content Network
Peirce's criterion does not depend on observation data (only characteristics of the observation data), therefore making it a highly repeatable process that can be calculated independently of other processes. This feature makes Peirce's criterion for identifying outliers ideal in computer applications because it can be written as a call function.
The formula then divides by () to account for the fact that we remove the observation rather than adjusting its value, reflecting the fact that removal changes the distribution of covariates more when applied to high-leverage observations (i.e. with outlier covariate values). Similar formulas arise when applying general formulas for statistical ...
Previously when assessing a dataset before running a linear regression, the possibility of outliers would be assessed using histograms and scatterplots. Both methods of assessing data points were subjective and there was little way of knowing how much leverage each potential outlier had on the results data.
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
Mahalanobis distance is also used to determine multivariate outliers. Regression techniques can be used to determine if a specific case within a sample population is an outlier via the combination of two or more variable scores.
In statistics, Cook's distance or Cook's D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. [1] In a practical ordinary least squares analysis, Cook's distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it ...
However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.