enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The symmetry groups of the Platonic solids are a special class of three-dimensional point groups known as polyhedral groups. The high degree of symmetry of the Platonic solids can be interpreted in a number of ways. Most importantly, the vertices of each solid are all equivalent under the action of the symmetry group, as are the edges and faces.

  3. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and size. These are fitted together along their respective faces (face-to-face) in a regular fashion, forming the surface of the 4-polytope which is a closed, curved 3-dimensional space (analogous to the way the surface of ...

  4. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    The convex regular 4-polytopes are the four-dimensional analogues of the Platonic solids. The most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube. The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius.

  5. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    They lie in just three symmetry groups, which are named after the Platonic solids: Tetrahedral; Octahedral (or cubic) Icosahedral (or dodecahedral) Any shapes with icosahedral or octahedral symmetry will also contain tetrahedral symmetry.

  6. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The tetrahedron is the only Platonic solid not mapped to itself by point inversion. The proper rotations, (order-3 rotation on a vertex and face, and order-2 on two edges) and reflection plane (through two faces and one edge) in the symmetry group of the regular tetrahedron

  7. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The polytopes of rank 2 (2-polytopes) are called polygons.Regular polygons are equilateral and cyclic.A p-gonal regular polygon is represented by Schläfli symbol {p}.. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular.

  8. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    In geometry, an icosahedron (/ ˌ ... The best known is the (convex, non-stellated) regular icosahedron—one of the Platonic solids—whose faces are 20 equilateral ...

  9. Exceptional object - Wikipedia

    en.wikipedia.org/wiki/Exceptional_object

    The Platonic solids, seen here in an illustration from Johannes Kepler's Mysterium Cosmographicum (1596), are an early example of exceptional objects. The symmetries of three-dimensional space can be classified into two infinite families—the cyclic and dihedral symmetries of n-sided polygons—and five exceptional types of symmetry, namely the symmetry groups of the Platonic solids.