Search results
Results from the WOW.Com Content Network
A coefficient is a constant coefficient when it is a constant function. For avoiding confusion, ... is called the leading coefficient of the polynomial.
The discriminant Δ of the cubic is the square of = () (), where a is the leading coefficient of the cubic, and r 1, r 2 and r 3 are the three roots of the cubic. As Δ {\displaystyle {\sqrt {\Delta }}} changes of sign if two roots are exchanged, Δ {\displaystyle {\sqrt {\Delta }}} is fixed by the Galois group only if the Galois group is A 3 .
The Hilbert function, the Hilbert series and the Hilbert polynomial of a filtered algebra are those of the associated graded algebra. The Hilbert polynomial of a projective variety V in P n is defined as the Hilbert polynomial of the homogeneous coordinate ring of V .
By successively dividing out factors x − a, one sees that any polynomial with complex coefficients can be written as a constant (its leading coefficient) times a product of such polynomial factors of degree 1; as a consequence, the number of (complex) roots counted with their multiplicities is exactly equal to the degree of the polynomial.
Let () be a polynomial equation, where P is a univariate polynomial of degree n.If one divides all coefficients of P by its leading coefficient, one obtains a new polynomial equation that has the same solutions and consists to equate to zero a monic polynomial.
Thus, the set of polynomials (with coefficients from a given field F) whose degrees are smaller than or equal to a given number n forms a vector space; for more, see Examples of vector spaces. More generally, the degree of the product of two polynomials over a field or an integral domain is the sum of their degrees:
If the degree of p is greater than the degree of q, then the limit is positive or negative infinity depending on the signs of the leading coefficients; If the degree of p and q are equal, the limit is the leading coefficient of p divided by the leading coefficient of q; If the degree of p is less than the degree of q, the limit is 0.
The derivative of a cubic function is a quadratic function. A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root. The graph of a cubic function always has a single inflection point.