Search results
Results from the WOW.Com Content Network
Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.
Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.
Qalculate! is an arbitrary precision cross-platform software calculator. [9] It supports complex mathematical operations and concepts such as derivation, integration, data plotting, and unit conversion. It is a free and open-source software released under GPL v2.
bc first appeared in Version 6 Unix in 1975. It was written by Lorinda Cherry of Bell Labs as a front end to dc, an arbitrary-precision calculator written by Robert Morris and Cherry. dc performed arbitrary-precision computations specified in reverse Polish notation. bc provided a conventional programming-language interface to the same capability via a simple compiler (a single yacc source ...
dc (desk calculator) is a cross-platform reverse-Polish calculator which supports arbitrary-precision arithmetic. [1] It was written by Lorinda Cherry and Robert Morris at Bell Labs . [ 2 ] It is one of the oldest Unix utilities, preceding even the invention of the C programming language .
A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...
PARI/GP performs arbitrary precision calculations (e.g., the significand can be millions of digits long—and billions of digits on 64-bit machines). It can compute factorizations , perform elliptic curve computations and perform algebraic number theory calculations.
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...