enow.com Web Search

  1. Ad

    related to: conditional independence probability equation examples

Search results

  1. Results from the WOW.Com Content Network
  2. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability

  3. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).

  4. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  5. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  6. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    Given , the Radon-Nikodym theorem implies that there is [3] a -measurable random variable ():, called the conditional probability, such that () = for every , and such a random variable is uniquely defined up to sets of probability zero. A conditional probability is called regular if ⁡ () is a probability measure on (,) for all a.e.

  7. Conditioning (probability) - Wikipedia

    en.wikipedia.org/wiki/Conditioning_(probability)

    In this sense, "the concept of a conditional probability with regard to an isolated hypothesis whose probability equals 0 is inadmissible. " ( Kolmogorov [ 6 ] ) The additional input may be (a) a symmetry (invariance group); (b) a sequence of events B n such that B n ↓ B , P ( B n ) > 0; (c) a partition containing the given event.

  8. Conditional dependence - Wikipedia

    en.wikipedia.org/wiki/Conditional_Dependence

    In essence probability is influenced by a person's information about the possible occurrence of an event. For example, let the event be 'I have a new phone'; event be 'I have a new watch'; and event be 'I am happy'; and suppose that having either a new phone or a new watch increases the probability of my being happy.

  9. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    For example, a fruit may be considered to be an apple if it is red, round, and about 10 cm in diameter. A naive Bayes classifier considers each of these features to contribute independently to the probability that this fruit is an apple, regardless of any possible correlations between the color, roundness, and diameter features.

  1. Ad

    related to: conditional independence probability equation examples