Search results
Results from the WOW.Com Content Network
An alternative to this type of coalescer is a flow through pre-coalescer that is installed upstream in a separator tank. In the Compact Electrostatic Coalescer, [2] droplet coalescence is achieved by applying AC electric fields (50–60 Hz) to water-in-oil emulsions under turbulent-flow conditions. The turbulence increases the collision ...
Teller's no-binding theorem was in fact also used to bound from below the total Coulomb interaction in terms of the simpler Hartree energy appearing in Thomas–Fermi theory. Speaking about the Lieb–Thirring proof, Dyson wrote later [17] [18] Lenard and I found a proof of the stability of matter in 1967.
The electrostatic theory assumes just a two phase system, with dielectric particles forming chains aligned with an electric field in an analogous way to how magnetorheological fluid (MR) fluids work. An ER fluid has been constructed with the solid phase made from a conductor coated in an insulator. [ 5 ]
According to physicist Philip Warren Anderson, the use of the term "condensed matter" to designate a field of study was coined by him and Volker Heine, when they changed the name of their group at the Cavendish Laboratories, Cambridge, from Solid state theory to Theory of Condensed Matter in 1967, [10] as they felt it better included their interest in liquids, nuclear matter, and so on.
[4]: p.712 For example, if a positive charge is brought near the object (see picture of cylindrical electrode near electrostatic machine), the electrons in the metal will be attracted toward it and move to the side of the object facing it. When the electrons move out of an area, they leave an unbalanced positive charge due to the nuclei.
In chemistry, the self-energy or Born energy of an ion is the energy associated with the field of the ion itself. [citation needed]In solid state and condensed-matter physics self-energies and a myriad of related quasiparticle properties are calculated by Green's function methods and Green's function (many-body theory) of interacting low-energy excitations on the basis of electronic band ...
In regular cold matter, quarks, fundamental particles of nuclear matter, are confined by the strong force into hadrons that consist of 2–4 quarks, such as protons and neutrons. Quark matter or quantum chromodynamical (QCD) matter is a group of phases where the strong force is overcome and quarks are deconfined and free to move.
Examples include experiments that have demonstrated interference between condensates due to wave–particle duality, [58] the study of superfluidity and quantized vortices, the creation of bright matter wave solitons from Bose condensates confined to one dimension, and the slowing of light pulses to very low speeds using electromagnetically ...