Search results
Results from the WOW.Com Content Network
A predictive parser is a recursive descent parser that does not require backtracking. [3] Predictive parsing is possible only for the class of LL( k ) grammars, which are the context-free grammars for which there exists some positive integer k that allows a recursive descent parser to decide which production to use by examining only the next k ...
Backtracking is an important tool for solving constraint satisfaction problems, [2] such as crosswords, verbal arithmetic, Sudoku, and many other puzzles. It is often the most convenient technique for parsing , [ 3 ] for the knapsack problem and other combinatorial optimization problems.
The Spirit Parser Framework is an object oriented recursive descent parser generator framework implemented using template metaprogramming techniques. Expression templates allow users to approximate the syntax of extended Backus–Naur form (EBNF) completely in C++.
A formal grammar that contains left recursion cannot be parsed by a naive recursive descent parser unless they are converted to a weakly equivalent right-recursive form. . However, recent research demonstrates that it is possible to accommodate left-recursive grammars (along with all other forms of general CFGs) in a more sophisticated top-down parser by use of curta
Regular languages are a category of languages (sometimes termed Chomsky Type 3) which can be matched by a state machine (more specifically, by a deterministic finite automaton or a nondeterministic finite automaton) constructed from a regular expression.
Memoization was explored as a parsing strategy in 1991 by Peter Norvig, who demonstrated that an algorithm similar to the use of dynamic programming and state-sets in Earley's algorithm (1970), and tables in the CYK algorithm of Cocke, Younger and Kasami, could be generated by introducing automatic memoization to a simple backtracking recursive ...
A TDPL grammar can be viewed as an extremely minimalistic formal representation of a recursive descent parser, in which each of the nonterminals schematically represents a parsing function. Each of these nonterminal-functions takes as its input argument a string to be recognized, and yields one of two possible outcomes:
LL grammars can alternatively be characterized as precisely those that can be parsed by a predictive parser – a recursive descent parser without backtracking – and these can be readily written by hand. This article is about the formal properties of LL grammars; for parsing, see LL parser or recursive descent parser.