Search results
Results from the WOW.Com Content Network
An engine control unit (ECU), also called an engine control module (ECM), [1] is a device that controls various subsystems of an internal combustion engine. Systems commonly controlled by an ECU include the fuel injection and ignition systems.
An electronic control unit (ECU), also known as an electronic control module (ECM), is an embedded system in automotive electronics that controls one or more of the electrical systems or subsystems in a car or other motor vehicle.
A host of functions required for ECU software calibration, such as interface-dependent calibration methods, calibration data management, measurement data visualization and analysis, ECU programming, vehicle bus monitoring, as well as remote control through standard interfaces, are part of the product's functional complement.
Of all the electronics in any car, the computing power of the engine control unit is the highest, typically a 32-bit processor. [citation needed] A modern car may have up to 100 ECU's and a commercial vehicle up to 40. [citation needed] An engine ECU controls such functions as: In a diesel engine: Fuel injection rate; Emission control, NOx control
MAP sensor data can be converted to air mass data by using a second variable coming from an IAT Sensor (intake air temperature sensor). This is called the speed-density method. Engine speed (RPM) is also used to determine where on a look up table to determine fuelling, hence speed-density (engine speed / air density).
A Digifant II DF-1 Engine Control Unit used in '91 Volkswagen Golf Cabriolet with 2E engine. Digifant is an Engine Management System operated by an Engine Control Unit that actuates outputs, such as fuel injection and ignition systems, using information derived from sensor inputs, such as engine speed, exhaust oxygen and intake air flow. [1]
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web. AOL.
The driver requests the torque or engine speed requirements via accelerator pedal potentiometer thereby sending a signal to the engine ECU which then, depending on its mapping and data collected from various sensors, calculates in real time the quantity of injected fuel required, thus altering the fuel rack to the required position.