enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    For example, when a path for conduction or radiation is made available, heat always flows spontaneously from a hotter to a colder body. Such phenomena are accounted for in terms of entropy change . [ 12 ] [ 13 ] A heat pump can reverse this heat flow, but the reversal process and the original process, both cause entropy production, thereby ...

  3. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    A prime example of this irreversibility is the transfer of heat by conduction or radiation. It was known long before the discovery of the notion of entropy that when two bodies, initially of different temperatures, come into direct thermal connection, then heat immediately and spontaneously flows from the hotter body to the colder one.

  4. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    A traditional version of the second law of thermodynamics states: Heat does not spontaneously flow from a colder body to a hotter body. The second law refers to a system of matter and radiation, initially with inhomogeneities in temperature, pressure, chemical potential, and other intensive properties , that are due to internal 'constraints ...

  5. Convection - Wikipedia

    en.wikipedia.org/wiki/Convection

    At the heat source of a system of natural circulation, the heated fluid becomes lighter than the fluid surrounding it, and thus rises. At the heat sink, the nearby fluid becomes denser as it cools, and is drawn downward by gravity. Together, these effects create a flow of fluid from the heat source to the heat sink and back again.

  6. Thermal equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermal_equilibrium

    Heat can flow into or out of a closed system by way of thermal conduction or of thermal radiation to or from a thermal reservoir, and when this process is effecting net transfer of heat, the system is not in thermal equilibrium. While the transfer of energy as heat continues, the system's temperature can be changing.

  7. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    The molar heat capacity is the heat capacity per unit amount (SI unit: mole) of a pure substance, and the specific heat capacity, often called simply specific heat, is the heat capacity per unit mass of a material. Heat capacity is a physical property of a substance, which means that it depends on the state and properties of the substance under ...