enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Information theory is useful to calculate the smallest amount of information required to convey a message, as in data compression. For example, consider the transmission of sequences comprising the 4 characters 'A', 'B', 'C', and 'D' over a binary channel.

  3. Quantities of information - Wikipedia

    en.wikipedia.org/wiki/Quantities_of_information

    Continued darkness until widely scattered light in the morning." This message contains almost no information. However, a forecast of a snowstorm would certainly contain information since such does not happen every evening. There would be an even greater amount of information in an accurate forecast of snow for a warm location, such as Miami ...

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:

  5. Missing data - Wikipedia

    en.wikipedia.org/wiki/Missing_data

    When data are MCAR, the analysis performed on the data is unbiased; however, data are rarely MCAR. In the case of MCAR, the missingness of data is unrelated to any study variable: thus, the participants with completely observed data are in effect a random sample of all the participants assigned a particular intervention.

  6. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    To find the joint probability distribution, more data is required. For example, suppose P(L = red) = 0.2, P(L = yellow) = 0.1, and P(L = green) = 0.7. Multiplying each column in the conditional distribution by the probability of that column occurring results in the joint probability distribution of H and L, given in the central 2×3 block of ...

  7. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    For highly correlated input data the one-in-10 rule (10 observations or labels needed per feature) may not be directly applicable due to the high correlation of the features: For images there is a rule of thumb that per class 1000 examples are needed. [11]

  8. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    The instrumental variables approach requires us to find additional data variables z t that serve as instruments for the mismeasured regressors x t. This method is the simplest from the implementation point of view, however its disadvantage is that it requires collecting additional data, which may be costly or even impossible.

  9. Lookup table - Wikipedia

    en.wikipedia.org/wiki/Lookup_table

    For data requests that fall between the table's samples, an interpolation algorithm can generate reasonable approximations by averaging nearby samples." [8] In data analysis applications, such as image processing, a lookup table (LUT) can be used to transform the input data into a more desirable output format. For example, a grayscale picture ...