enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    If the number 1 is excluded, while keeping divisibility as ordering on the elements greater than 1, then the resulting poset does not have a least element, but any prime number is a minimal element for it. In this poset, 60 is an upper bound (though not a least upper bound) of the subset {,,,}, which does not have any lower bound (since 1 is ...

  3. Dilworth's theorem - Wikipedia

    en.wikipedia.org/wiki/Dilworth's_theorem

    An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest ...

  4. Antichain - Wikipedia

    en.wikipedia.org/wiki/Antichain

    An antichain in is a subset of in which each pair of different elements is incomparable; that is, there is no order relation between any two different elements in . (However, some authors use the term "antichain" to mean strong antichain , a subset such that there is no element of the poset smaller than two distinct elements of the antichain.)

  5. Greatest element and least element - Wikipedia

    en.wikipedia.org/wiki/Greatest_element_and_least...

    In mathematics, especially in order theory, the greatest element of a subset of a partially ordered set (poset) is an element of that is greater than every other element of . The term least element is defined dually , that is, it is an element of S {\displaystyle S} that is smaller than every other element of S . {\displaystyle S.}

  6. Incompatible element - Wikipedia

    en.wikipedia.org/wiki/Incompatible_element

    In petrology and geochemistry, an incompatible element is one that is unsuitable in size and/or charge to the cation sites of the minerals in which it is included. It is defined by a partition coefficient between rock-forming minerals and melt being much smaller than 1.

  7. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    An element x of S embeds into the completion as its principal ideal, the set ↓ x of elements less than or equal to x. Then (↓ x) u is the set of elements greater than or equal to x, and ((↓ x) u) l = ↓ x, showing that ↓ x is indeed a member of the completion. The mapping from x to ↓ x is an order-embedding. [7]

  8. Sperner's theorem - Wikipedia

    en.wikipedia.org/wiki/Sperner's_theorem

    The family of all subsets of an n-element set (its power set) can be partially ordered by set inclusion; in this partial order, two distinct elements are said to be incomparable when neither of them contains the other. The width of a partial order is the largest number of elements in an antichain, a set of pairwise incomparable elements ...

  9. Szpilrajn extension theorem - Wikipedia

    en.wikipedia.org/wiki/Szpilrajn_Extension_Theorem

    Next it is shown that the poset of partial orders extending , ordered by extension, has a maximal element. The existence of such a maximal element is proved by applying Zorn's lemma to this poset. Zorn's lemma states that a partial order in which every chain has an upper bound has a maximal element. A chain in this poset is a set of relations ...