Search results
Results from the WOW.Com Content Network
In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
Row echelon form — a matrix in this form is the result of applying the forward elimination procedure to a matrix (as used in Gaussian elimination). Wronskian — the determinant of a matrix of functions and their derivatives such that row n is the (n−1) th derivative of row one.
During execution of the Bareiss algorithm, every integer that is computed is the determinant of a submatrix of the input matrix. This allows, using the Hadamard inequality, to bound the size of these integers. Otherwise, the Bareiss algorithm may be viewed as a variant of Gaussian elimination and needs roughly the same number of arithmetic ...
Health policy can be defined as the "decisions, plans, and actions that are undertaken to achieve specific healthcare goals within a society". [1] According to the World Health Organization, an explicit health policy can achieve several things: it defines a vision for the future; it outlines priorities and the expected roles of different groups; and it builds consensus and informs people.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Health insurance industry officials remain uncharacteristically reserved in the aftermath of the fatal shooting of UnitedHealthcare CEO Brian Thompson on Dec. 4.
If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ( B ) d . {\displaystyle \det ...