enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information (with intelligent methods) from a data set and transforming the information into a comprehensible structure for further use.

  3. Associative classifier - Wikipedia

    en.wikipedia.org/wiki/Associative_classifier

    An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  5. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    Classification has many applications. In some of these, it is employed as a data mining procedure, while in others more detailed statistical modeling is undertaken. Biological classification – The science of identifying, describing, defining and naming groups of biological organisms

  6. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ลท: ^ = The samples come from some set X (e.g., the set of all documents, or the set of all images), while the class labels form a finite set Y defined prior to training.

  7. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  8. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    For example, in medicine sensitivity and specificity are often used, while in computer science precision and recall are preferred. An important distinction is between metrics that are independent of the prevalence or skew (how often each class occurs in the population), and metrics that depend on the prevalence – both types are useful, but ...

  9. Logistic model tree - Wikipedia

    en.wikipedia.org/wiki/Logistic_model_tree

    In computer science, a logistic model tree (LMT) is a classification model with an associated supervised training algorithm that combines logistic regression (LR) and decision tree learning. [ 1 ] [ 2 ]