Search results
Results from the WOW.Com Content Network
Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [ 1 ] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0 ...
Gauss proved [10] that for any prime number p (with the sole exception of p = 3), the product of its primitive roots is congruent to 1 modulo p. He also proved [11] that for any prime number p, the sum of its primitive roots is congruent to μ (p − 1) modulo p, where μ is the Möbius function. For example,
Primitive root modulo m: A number g is a primitive root modulo m if, for every integer a coprime to m, there is an integer k such that g k ≡ a (mod m). A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
Also called primes congruent to d modulo a. The primes of the form 2n+1 are the odd primes, ... All prime numbers from 31 to 6,469,693,189 for free download.
In modular arithmetic, the integers coprime (relatively prime) to n from the set {,, …,} of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n.
where the modulus m is a prime number or a power of a prime number, the multiplier a is an element of high multiplicative order modulo m (e.g., a primitive root modulo n), and the seed X 0 is coprime to m. Other names are multiplicative linear congruential generator (MLCG) [2] and multiplicative congruential generator (MCG).
If it is 1, then n may be prime. If a n −1 (modulo n) is 1 but n is not prime, then n is called a pseudoprime to base a. In practice, if a n −1 (modulo n) is 1, then n is usually prime. But here is a counterexample: if n = 341 and a = 2, then even though 341 = 11·31 is composite.