Search results
Results from the WOW.Com Content Network
English: Diameter comparison of Neptune and Earth. The two images linked below were combined by the uploader to create a new size comparison of Neptune and Earth ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Parts-per-million chart of the relative mass distribution of the Solar System, each cubelet denoting 2 × 10 24 kg. This article includes a list of the most massive known objects of the Solar System and partial lists of smaller objects by observed mean radius.
This template is to show size comparison of Jupiter, Neptune and the Earth alongside extrasolar planets that have their radial size confirmed. {{ Planetary radius | radius = <!--simplified number of the radius (Jupiter equals 100px)--> }}
A size comparison of Neptune and Earth. Neptune's mass of 1.0243 × 10 26 kg [8] is intermediate between Earth and the larger gas giants: it is 17 times that of Earth but just 1/19th that of Jupiter. [g] Its gravity at 1 bar is 11.15 m/s 2, 1.14 times the surface gravity of Earth, [71] and surpassed only by Jupiter. [72]
Thus, the Sun occupies 0.00001% (1 part in 10 7) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly 1 millionth (10 −6) that of the Sun. Jupiter, the largest planet, is 5.2 AU from the Sun and has a radius of 71,000 km (0.00047 AU; 44,000 mi), whereas the most distant planet, Neptune, is 30 AU ...
Illustration of the inferred size of the super-Earth CoRoT-7b (center) in comparison with Earth and Neptune. A Super-Earth or super-terran or super-tellurian is a type of exoplanet with a mass higher than Earth, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17.1 times Earth's, respectively. [1]
Size comparison of Kepler-10c with Earth and Neptune In 2014, new measurements of Kepler-10c found it to be a Neptune-mass planet (17 Earth masses) with a density higher than Earth's, indicating that Kepler-10c is composed mostly of rock with possibly up to 20% high-pressure water ice but without a hydrogen-dominated envelope.