Search results
Results from the WOW.Com Content Network
In probability and statistics, a moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both.
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒ErdÅ‘s–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
In mathematics, the Ahlfors conjecture, now a theorem, states that the limit set of a finitely-generated Kleinian group is either the whole Riemann sphere, or has measure 0. The conjecture was introduced by Ahlfors ( 1966 ), who proved it in the case that the Kleinian group has a fundamental domain with a finite number of sides.
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [1] [2] [3] Some conjectures, ...
In probability and statistics, a factorial moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both.
That is: given a sequence of independent and identically distributed random variables, each having mean zero and positive variance, if additionally the third absolute moment is finite, then the cumulative distribution functions of the standardized sample mean and the standard normal distribution differ (vertically, on a graph) by no more than ...
In such universes Mach's principle can be stated as the distribution of matter and field energy-momentum (and possibly other information) at a particular moment in the universe determines the inertial frame at each point in the universe (where "a particular moment in the universe" refers to a chosen Cauchy surface). [7]: 188–207
In mathematics, the Lindelöf hypothesis is a conjecture by Finnish mathematician Ernst Leonard Lindelöf [1] about the rate of growth of the Riemann zeta function on the critical line. This hypothesis is implied by the Riemann hypothesis .