Search results
Results from the WOW.Com Content Network
Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" nuclide are used to figure out reaction mechanisms).
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).
Water purification combines a number of methods to produce potable or drinking water. Downstream processing refers to purification of chemicals, pharmaceuticals and food ingredients produced by fermentation or synthesized by plant and animal tissues, for example antibiotics, citric acid, vitamin E, and insulin.
Natural uranium consists of three isotopes; the majority (99.274%) is U-238, while approximately 0.72% is U-235, fissile by thermal neutrons, and the remaining 0.0055% is U-234. If natural uranium is enriched to 3% U-235, it can be used as fuel for light water nuclear reactors. If it is enriched to 90% uranium-235, it can be used for nuclear ...
It is a type of thermite-based purification, which was patented in 1895 by German chemist Hans Goldschmidt. [3] Development of the Ames process came at a time of increased research into mass uranium-metal production. The desire for increased production was motivated by a fear of Nazi Germany's developing nuclear weapons before the Allies. The ...
A very important case of ion-exchange is the plutonium-uranium extraction process , which is used to separate the plutonium (mainly 239 Pu) and the uranium (in that case known as reprocessed uranium) contained in spent fuel from americium, curium, neptunium (the minor actinides), and the fission products that come from nuclear reactors. Thus ...
Gaseous diffusion uses microporous membranes to enrich uranium. Gaseous diffusion is a technology that was used to produce enriched uranium by forcing gaseous uranium hexafluoride (UF 6) through microporous membranes. This produces a slight separation (enrichment factor 1.0043) between the molecules containing uranium-235 (235 U) and uranium ...
Infrared absorption spectra of the two UF 6 isotopes at 300 and 80 K. Schematic of a stage of an isotope separation plant for uranium enrichment with laser. An infrared laser with a wavelength of approx. 16 μm radiates at a high repetition rate onto a UF6 carrier gas mixture, which flows supersonically out of a laval nozzle.