Search results
Results from the WOW.Com Content Network
The form used by Viktorov, that brought Lamb waves into practical use, has wave velocity on the y-axis and /, the thickness/wavelength ratio, on the x-axis. The most practical form of all, for which credit is due to J. and H. Krautkrämer as well as to Floyd Firestone (who, incidentally, coined the phrase "Lamb waves") has wave velocity on the ...
One peculiar geometrical characteristic of inertial waves is that their phase velocity, which describes the movement of the crests and troughs of the wave, is perpendicular to their group velocity, which is a measure of the propagation of energy. Whereas a sound wave or an electromagnetic wave of any frequency is possible, inertial waves can ...
Mechanical waves can be produced only in media which possess elasticity and inertia. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves. Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. Like all waves, mechanical waves transport energy.
Other examples of mechanical waves are seismic waves, gravity waves, surface waves and string vibrations. In an electromagnetic wave (such as light), coupling between the electric and magnetic fields sustains propagation of waves involving these fields according to Maxwell's equations .
Rayleigh waves are distinct from other types of surface or guided acoustic waves such as Love waves or Lamb waves, both being types of guided waves supported by a layer, or longitudinal and shear waves, that travel in the bulk. Rayleigh waves have a speed slightly less than shear waves by a factor dependent on the elastic constants of the ...
The inertia force is of the functional form as found in potential flow theory, while the drag force has the form as found for a body placed in a steady flow. In the heuristic approach of Morison, O'Brien, Johnson and Schaaf these two force components, inertia and drag, are simply added to describe the inline force in an oscillatory flow.
Experimental image of surface acoustic waves on a crystal of tellurium oxide [1]. A surface acoustic wave (SAW) is an acoustic wave traveling along the surface of a material exhibiting elasticity, with an amplitude that typically decays exponentially with depth into the material, such that they are confined to a depth of about one wavelength.
In this type the derivative (slope) of the wave's amplitude (in sound waves the pressure, in electromagnetic waves, the current) is forced to zero at the boundary. So there is an amplitude maximum (antinode) at the boundary, the first node occurs a quarter wavelength from the end, and the other nodes are at half wavelength intervals from there: