enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data differencing - Wikipedia

    en.wikipedia.org/wiki/Data_differencing

    Main concerns for data differencing are usability and space efficiency (patch size).. If one simply wishes to reconstruct the target given the source and patch, one may simply include the entire target in the patch and "apply" the patch by discarding the source and outputting the target that has been included in the patch; similarly, if the source and target have the same size one may create a ...

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  4. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  5. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete differential calculus is the study of the definition, properties, and applications of the difference quotient of a function. The process of finding the difference quotient is called differentiation .

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  7. Time-scale calculus - Wikipedia

    en.wikipedia.org/wiki/Time-scale_calculus

    The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice—once for differential equations and once again for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale (also known as a time-set ...

  8. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The discrete equivalent of differentiation is finite differences. The study of differential calculus is unified with the calculus of finite differences in time scale calculus. [54] The arithmetic derivative involves the function that is defined for the integers by the prime factorization. This is an analogy with the product rule. [55]

  9. Bregman divergence - Wikipedia

    en.wikipedia.org/wiki/Bregman_divergence

    Let : be a continuously-differentiable, strictly convex function defined on a convex set. The Bregman distance associated with F for points p , q ∈ Ω {\displaystyle p,q\in \Omega } is the difference between the value of F at point p and the value of the first-order Taylor expansion of F around point q evaluated at point p :