Search results
Results from the WOW.Com Content Network
Each antibody binds to a specific antigen in a highly specific interaction analogous to a lock and key.. An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses, including those that cause disease.
The universal structure of antibody includes the constant regions part of the fragment crystallizable(Fc) region of the antibody (shown in dark blue). It also includes the fragment antigen binding which is composed of one heavy and one light chain (shown as L for light and H for heavy).
Hemagglutinin, neuraminidase, and M2 protein in the influenza virus; gp160, composed of subunits gp120 and gp41, in the human immunodeficiency virus (HIV). [1] Viral glycoproteins play a critical role in virus-to-cell fusion. Virus-to-cell fusion is initiated when viral glycoproteins bind to cellular receptors. [5]
An antibody molecule. The two heavy chains are colored red, blue, and purple. The two light chains green and yellow. See also: The immunoglobulin light chain is the small polypeptide subunit of an antibody (immunoglobulin). A typical antibody is composed of two immunoglobulin (Ig) heavy chains and two Ig light chains.
The immunoglobulin heavy chain (IgH) is the large polypeptide subunit of an antibody (immunoglobulin). In human genome, the IgH gene loci are on chromosome 14. A typical antibody is composed of two immunoglobulin (Ig) heavy chains and two Ig light chains. Several different types of heavy chain exist that define the class or isotype of an ...
Each type of protein is a specialist that usually only performs one function, so if a cell needs to do something new, it must make a new protein. Viruses force the cell to make new proteins that the cell does not need, but are needed for the virus to reproduce. Protein synthesis consists of two major steps: transcription and translation. [34]
During assembly of the bacteriophage (phage) T4 virion, the structural proteins encoded by the phage genes interact with each other in a characteristic sequence. Maintaining an appropriate balance in the amounts of each of these structural proteins produced during viral infection appears to be critical for normal phage T4 morphogenesis. [4]
Hydrogen bond interactions will induce the enzymatic activity of an enzyme; therefore, the more hydrogen bonds that are present at the antibody-antigen binding site will result in a stronger, more stable binding structure. [1] The tertiary structure of an antibody is important to analyze and design new antibodies. The structure and sequence of ...