Search results
Results from the WOW.Com Content Network
To incorporate nanowire technology into industrial applications, researchers in 2008 developed a method of welding nanowires together: a sacrificial metal nanowire is placed adjacent to the ends of the pieces to be joined (using the manipulators of a scanning electron microscope); then an electric current is applied, which fuses the wire ends ...
Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium-ion batteries, thermoelectrics and sensors.
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively.
In 1987, an IBM research team led by Bijan Davari demonstrated a metal–oxide–semiconductor field-effect transistor (MOSFET) with a 10 nm gate oxide thickness, using tungsten-gate technology. [12] Multi-gate MOSFETs enabled scaling below 20 nm gate length, starting with the FinFET (fin field-effect transistor), a three-dimensional, non ...
Bundles of wires can be used to enhance tribological properties of polymers, with applications in actuators and potentiometers. It has been recently proposed that twisted nanowires could work as electromechanical nanodevices (or torsion nanobalances) to measure forces and torques at nanoscale with great precision. [14]
The structure of a nanotube strongly affects its electrical properties. For a given (n,m) nanotube, if n = m, the nanotube is metallic; if n − m is a multiple of 3, then the nanotube is semiconducting with a very small band gap, otherwise the nanotube is a moderate semiconductor.
Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology.
Being a branch of nanoscience and nanotechnology, nanoionics is unambiguously defined by its own objects (nanostructures with FIT), subject matter (properties, phenomena, effects, mechanisms of processes, and applications connected with FIT at nano-scale), method (interface design in nanosystems of superionic conductors), and the criterion (R/L ~1, where R is the length scale of device ...