Search results
Results from the WOW.Com Content Network
Aluminum conductor steel-reinforced cable (ACSR) is a type of high-capacity, high-strength stranded conductor typically used in overhead power lines. The outer strands are high-purity aluminium , chosen for its good conductivity, low weight, low cost, resistance to corrosion and decent mechanical stress resistance.
The B and C scales overlap, such that readings below HRC 20 and those above HRB 100, generally considered unreliable, need not be taken or specified. Typical values include: Very hard steel (e.g. chisels, quality knife blades ): HRC 55–66 (Hardened High Speed Carbon and Tool Steels such as M2, W2, O1, CPM-M4, and D2, as well as many of the ...
Also, the size of the aluminum wire needs to be larger compared to copper wire used for the same circuit due to the increased resistance of the aluminum alloys. For example, a 15 A branch circuit supplying standard lighting fixtures can be installed with either #14 AWG copper building wire or #12 AWG aluminum building wire according to the NEC.
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
However, AWG is dissimilar to IEC 60228, the metric wire-size standard used in most parts of the world, based directly on the wire cross-section area (in square millimetres, mm 2). The AWG tables are for a single, solid and round conductor. The AWG of a stranded wire is determined by the cross-sectional area of the equivalent solid conductor.
ISO 18265: "Metallic materials — Conversion of hardness values" (2013) ASTM E140-12B(2019)e1: "Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness" (2019)
Alloy 5083 retains exceptional strength after welding. It has the highest strength of the non-heat treatable alloys with an Ultimate Tensile Strength of 317 MPa or 46000 psi and a Tensile Yield Strength of 228 MPa or 33000 psi. It is not recommended for use in temperatures in excess of 65 °C. [2]
T6 temper 7075 has an ultimate tensile strength of 510–540 MPa (74,000–78,000 psi) and yield strength of at least 430–480 MPa (63,000–69,000 psi). It has a failure elongation of 5–11%. [9] The T6 temper is usually achieved by homogenizing the cast 7075 at 450 °C for several hours, quenching, and then ageing at 120 °C for 24 hours.