enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.

  3. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    Here, is the overall mass transfer coefficient, which could be determined by empirical correlations, is the surface area for mass transfer (particularly relevant in membrane-based separations), and ˙ is the mass flowrate of bulk fluid (e.g., mass flowrate of air in an application where water vapor is being separated from the air mixture). At ...

  4. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    This equation uses the overall heat transfer coefficient of an unfouled heat exchanger and the fouling resistance to calculate the overall heat transfer coefficient of a fouled heat exchanger. The equation takes into account that the perimeter of the heat exchanger is different on the hot and cold sides.

  5. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .

  6. Mass transfer - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer

    This rate can be quantified through the calculation and application of mass transfer coefficients for an overall process. These mass transfer coefficients are typically published in terms of dimensionless numbers, often including Péclet numbers, Reynolds numbers, Sherwood numbers, and Schmidt numbers, among others. [2] [3] [4]

  7. Sherwood number - Wikipedia

    en.wikipedia.org/wiki/Sherwood_number

    The Sherwood number (Sh) (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the total mass transfer rate ( convection + diffusion) to the rate of diffusive mass transport, [ 1 ] and is named in honor of Thomas Kilgore Sherwood .

  8. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    For best accuracy, n should be adjusted where correlations have a different exponent. We can take this further by substituting into this equation the definitions of the heat transfer coefficient, mass transfer coefficient, and Lewis number, yielding: = =

  9. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    The heat transfer rate can be written using Newton's law of cooling as = (), where h is the heat transfer coefficient and A is the heat transfer surface area. Because heat transfer at the surface is by conduction, the same quantity can be expressed in terms of the thermal conductivity k: