Search results
Results from the WOW.Com Content Network
Since the pressure of the standard formation reaction is fixed at 1 bar, the standard formation enthalpy or reaction heat is a function of temperature. For tabulation purposes, standard formation enthalpies are all given at a single temperature: 298 K, represented by the symbol Δ f H ⦵ 298 K.
Molar heat content of four substances in their designated states above 298.15 K and at 1 atm pressure. CaO(c) and Rh(c) are in their normal standard state of crystalline solid at all temperatures. S 2 (g) is a non-physical state below about 882 K and NiO(g) is a non-physical state at all temperatures.
Standard enthalpy of formation is the enthalpy change when one mole of any compound is formed from its constituent elements in their standard states. The enthalpy of formation of one mole of ethane gas refers to the reaction 2 C (graphite) + 3 H 2 (g) → C 2 H 6 (g).
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
of formation, Δ f H o liquid-147.6 kJ/mol Standard molar entropy, S o liquid: 229.7 J/(mol K) Heat capacity, c p: 132.42 J/(mol K) –262 °C to –3 °C Gas properties Std enthalpy change of formation, Δ f H o gas –124.7 kJ/mol Standard molar entropy, S o gas: 310.23 J/(mol K) Enthalpy of combustion, Δ c H o –2877.5 kJ/mol Heat capacity ...
Low heat values are calculated from high heat value test data. They may also be calculated as the difference between the heat of formation ΔH ⦵ f of the products and reactants (though this approach is somewhat artificial since most heats of formation are typically calculated from measured heats of combustion).. [1]
of formation, Δ f H o solid? kJ/mol Standard molar entropy, S o solid? J/(mol K) Heat capacity, c p? J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid? kJ/mol Standard molar entropy, S o liquid: 117.8 J/(mol K) Heat capacity, c p: 67.4 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas +52.47 kJ ...
All values refer to 25 °C and to the thermodynamically stable standard state at that temperature unless noted. Values from CRC refer to "100 kPa (1 bar or 0.987 standard atmospheres)". Lange indirectly defines the values to be standard atmosphere of "1 atm (101325 Pa)", although citing the same NBS and JANAF sources among others.