enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. QUICK scheme - Wikipedia

    en.wikipedia.org/wiki/Quick_scheme

    In order to find the cell face value a quadratic function passing through two bracketing or surrounding nodes and one node on the upstream side must be used. In central differencing scheme and second order upwind scheme the first order derivative is included and the second order derivative is ignored.

  3. Convection–diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Convection–diffusion...

    The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...

  4. Central differencing scheme - Wikipedia

    en.wikipedia.org/wiki/Central_differencing_scheme

    The right side of the convection-diffusion equation, which basically highlights the diffusion terms, can be represented using central difference approximation. To simplify the solution and analysis, linear interpolation can be used logically to compute the cell face values for the left side of this equation, which is nothing but the convective ...

  5. Upwind scheme - Wikipedia

    en.wikipedia.org/wiki/Upwind_scheme

    In computational physics, the term advection scheme refers to a class of numerical discretization methods for solving hyperbolic partial differential equations.In the so-called upwind schemes typically, the so-called upstream variables are used to calculate the derivatives in a flow field.

  6. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  7. Hybrid difference scheme - Wikipedia

    en.wikipedia.org/wiki/Hybrid_difference_scheme

    Hybrid difference scheme is a method used in the numerical solution for convection-diffusion problems. These problems play important roles in computational fluid dynamics . It can be described by the general partial equation as follows: [ 6 ]

  8. Upwind differencing scheme for convection - Wikipedia

    en.wikipedia.org/wiki/Upwind_differencing_scheme...

    Lower case denotes the face and upper case denotes node; , , and refer to the "East," "West," and "Central" cell. (again, see Fig. 1 below). Defining variable F as convection mass flux and variable D as diffusion conductance = and =

  9. Lax–Friedrichs method - Wikipedia

    en.wikipedia.org/wiki/Lax–Friedrichs_method

    This method is conservative and first order accurate, hence quite dissipative. It can, however be used as a building block for building high-order numerical schemes for solving hyperbolic partial differential equations, much like Euler time steps can be used as a building block for creating high-order numerical integrators for ordinary ...